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Mathematks is such a vast and rapidly expanding field of study that there are
inevitably many important and fascinating aspects of the subject which do not find
a Om e in the curriculum simply because of lack of time, even though they are well
within the grasp of secondary school students.

Some classes and many individual students, however, may find time to pursue
mathematical topics of special interest to them. The School Mathematics Study
Group is preparing pamphlets designed to make material for such study readily
accessible. Some of the pamphlets deal with material found in the regular curric-
ulum but in a more extended manner or from a novel point of view. Others deal
with topics not usually found at all in the standard curriculum.

This particular series of pamphlets, the Reprint Series, makes available ex-
pository articles which appeared in a c ;criety of mathematical periodicals. Even if
the periodicals were available to all schools, there is convenience in having articles
on one topic «Met ted and reprinted as is done here.

This series was prepared for the Panel on Supplementary Publications by
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PREFACE

Throughout all history, men have been curious about the ordinary
integers, or, more precisely, the natural numbers I, 2, 3, 4, . Even
little children are fascinated by numbers, as evidenced by their games
and their verses: "One, two, buckle my shoe, etc:'

The story of number theory begins with the ancient Greeks, for whom
arithmetike was the science of numbers rather than the art of computa-
tion. (Reckoning was called logistica and was generally deemed beneath
the dignity of mathematicians and philosophers.) Thus Euclid, the Pytha-
goreans, and other Greek writers were familiar with prime numbers,
perfect numbers, amicable numbers, and figurate numbers.

The classical theory dealt only with the natural numbers. The mod-
ern theory of numbers, however, studies the properties of the system of
rational integers 0, -2:1, ± 2, ...An integer ii is said to divide an integer
a if there exists an integer k such that a = bk. We can say that a is divis-
ible by b, or that b is a factor of a, also that a is a multiple of b and that k
is the quotient of a by b, provided that b O.

A unit is an integer that divides every integer; e.g., +1 and 1. A
prime number, or a prime, is an integer, not a unit, that is divisible only
by itself and the units. For example, 2, 3, 5, 19, and 37 are primes. A
composite number, or a composite, is an integer that is not zero, not a
unit, and not a prime; for example, 4, 21, 9 1 , and 1 I 1 are compor- s.
All integers take the form 2n or 2n + 1. An even integer is one th ,! is
a multiple of 2; any integer that is not even is odd.

The theory of numbers differs somewhat from other fields of mathe-
matics in several respects. In the first place, the beginner in number
theory needs but little other preparatory mathematical knowledge as a
background the basic principles of algebra virtually suffice. In the
second place, despite appearing to be relatively independent of other
fields of mathematics and despite the innocent simplicity of the state-
ment of many theorems, number theory is noted for the difficulty of itS
problems and proofs, which require considerable mathematical insight

page iii



and ingenuity. To illustrate the apparent simplicity of some problems,
consider the following theorems:

/1) Every positive integer is a sum of four squares, and fewer than
four squares will not suffice.
For example: 7 = P P + P

22-42+22+12+ 12

(2) Every integer n can be expressed in the form n x2 + z2

For example 7 = 2 + 22 13

22 = 5' + 12
Such relations and properties are very simple to state and easy to under-
stand, and are even readily illustrated by specific examples, but to give
a general proof is often exceedingly difficult.

On the other hand, some properties are rather easy to prove. For
example:

(1) The product of any two consecutive integers is divisible by 2.
(2) The sum of any integer and its square is an even number.
(3) The product of any three consecutive integers is divisible by 3.

Try to discover a proof for each of these by yourself!

This collection of essays explores, in a very elementary way, only two
aspects of number theory, namely the primes and the perfect numbers.
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FO REW 0 RD

The theory of prime numbers can he a fascinating subject. One of the
notable achievenwnts of Greek mathematics is Euclid's proof that the
number of primes is infinite. His proof is simple and. in the language
of the mathematician, "elegant,"

Another significant cornerstone of number theory is the FI,IuMrn.ental
Theorem ol Aril/In:Mr, which states that, disreprding the order of the
facton, a composite number can be factored into primes in one and only
one way. For example:

(1) 66 2 3 11

(2) 96 2' 3

(3) 1323 = $" 7'
It should be noted that in the field of number theory there are many

unsolved problems as well as sonw "theorems" which are believed to be
tr..e, but for which no proof has as yet been given, Thus, although it
has been proved that the number of primes is infinite, the problem of
finding the next prime after any given ',rime still remains unsolved.
Nor has anyone succeeded in developing a general method for finding
even one prime number gTeater than a given one. Again, it is suspected
that every positive even integer can be represented as the difference of
two positive primes in infinitely many ways, but this has never been
proved. For example:

(1) 6 = 11 5 7 = 17 - 11 = 19 13 etc.
(2) 8 11 3 13 5 := 19 11 := 31 23 = etc.
Perhaps one of the most celebrated unsolved problems of number

theory is the well-known Goldbach's conjectureevery even integer
greater than 2 can be represented as the sum of two positive primes.
For example:

(1)

(2)

(3)

(4)

4 2 + 2
10 = 3 + 7 5

30 11 + 19
100 11 + 89

+ 5
7 -4-

17

23
-+ 83 = 41 f- 59

Here is indeed a fascinating and challenging topic!



by Ernst Meissel, who succeeded in showing that the number of primesbelow 104 is 5,761,455. The Danish mathematician Bertelsen continued
these computations and announced, in 1893, that the number of primesbelow 10" is 50,847,478. This represents our most extended knowledge
along these lines.

No practicable procedure is yet known for testing large numbers for
primality, and the effort spent on testing certain special numbers hasbeen enormous. For more than 75 years the largest number actually
verified as a prime was the 39-digit number

1 = 170,141,183,460,469,231,731,687,303,715,884,105,727,
given by the French mathematician Anatole Lucas in 1876. In 1952,
the F.DSAC machine, in Cambridge, England, established the primality
of the much larger (79-digit) number

180 (2137 1)2 +
and in the same year the SWAC digital computer, in the United States,
established the primality of the enormous numbers 2"1 1, 2"7 1, and2'2 1, the last of which is a 386-digit number.

A dream of numbcr theorists is the finding of a function f(n) which
will yield prime numbers for all positive integral n. Thus 1(n).;----n2

+ 41 yields primes for all such n < 41, but 1(41) = (41)2, a composite
number. The quadratic polynomial f(n) =n2 79n -I- 1601 yields primesfor all n < 80. Polynomial functions can be obtained which will suc-
cessively yield as many primes as desired, but no such function can be
found which will always yield primes. It was about 1640 that the great
ny.mber theorist, Pierre de Fermat, conjectured that f(n) = 22" + 1 is
prime for all nonnegative integral n. For n = 0, 1, 2, 3, 4 we find f(n) 3,5, 17, 257. 6557, all prime numbers, but in 1732 Euler proved the
conjecture false by showing that 1(5) = (641)(6700417). It is now gen-
erally felt that f(n) is composite for all other values of n, although this
has not been established. An interesting recent result along these lines
is the proof, by W. U. Mills in 1947, of the exi:tence of a real number A
such that the largest integer not exceeding 143 is a prime for every posi-
tive integer n. Nothing was shown about the actual value, nor even the
rough magnitude. of the real number A.

A remarkable generaliution of Euclid's theorem on the infinitude ofthe primes was established by Lejeune-Dirichlet (1805-59), who suc-
ceeded in showing that every arithmetic sequence.

a,a-f-d,a+ 2d,a-4-Sd,,
in which a and d are relatively prime, contains an infinitude of primes.
The proof of this result is far from elementary.

Perhaps the most amazing result yet found concerning the distribu-
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ne Prime Numbers*
Howard W. Eves

Proposition 14 of Rook IX of Euclid's Elements is essentially the
equivalent of the important "fundametnal theorem of arithmetic," which
states that any integer greater than I can, except lot. the order ol the
factors, be expressed as a product of primes in one and onlv one way.
This theorem asserts that the prime numbers are building bricks front
which all otlwr integers may be made. Accordingly. the prime numbers
have received much study, and considerable efforts have been spent
trying to determine the nature of their distribution in the sequence
of positive integers. The chief results along this line obtained in an-
tiquity are Euclid's proof of the infinitude of primes and Eratosthenes'
Aieve for finding all primes below a given integer n.

Euclid's proof'. in Proposition 20 of hook IX of his Elements. that
the number 01 prime numbers is infinite. has Iwen universally regarded
by mathematicians 4.s a model of mathematical elegance. 'Ile proof
employs the indirect methixl, or reductio ad absurdum, and runs essen-
tially as follows. Suppose there is only a finite number of prune numbers.
which we shall denote by a. b, , k. Set P a, b. k. Then P 4- 1 is

either prime or composite. Rut, since a, b, k are all the primes,
P I. which is greater than each of a. b, . k cannot be a prime. On
the other hand. ii P + 1 is composite. it must be divisible by some
prime p. hut p must be a member of thc set a. b. k of all primes.
which means that p is a divisor of P Consequently. pcammt divide P + 1.
since p I. Thus our initial hypothesis thgt the nutnber of primes is
finite is untenable. and the tlworem is establhned.

The so-called sieve of Eratosthenes is a clever device noted by the
Greek mathematician Eratosthenes (c. 230 B.C.) for finding all the
prime numbers less than a given number n. One writes down, in order
and starting with 3. all the cxld numbers less than n. The composite
ntunbets in the sequence are then sifted out by crossing off, front 3. every
third number. then from the next remaining number. 5. every fifth
nmnber. then from tlw next remaining number. 7. every seventh num-
ber. front the next remaining number, I I. every eleventh number and
so on. In the protess sonw numbers will be crossed off more than mice.
All the remaining timbers. along with the number 2. constitute the
list of primes less than n.

From the sieve of Eratosthetws can be obtained a cumbersome formula
which will determine the number of primes below ma when the primes
brlow Are known. This formula was considerably improved in 1870

AdAptell horn ihswind Eve*, .4 rt Introduction In Mr Ifittury of Mothroonni (Nest link:
ham tic (ii. Ifl ..
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tion of the primes is -the so-called prime number theorem. Suppose we
let A. denote thc number of primes below n. "Flw prime number theorem
then says that (A. log, n)In approaches 1 as n becomes larger and larger.
In other words A./n, called the density of the primes among the first n
integers. is approximated by I /log, n, the approximation improving as
n increases. This theorem was conjectured by Gauss from an examina-
tion of a large table of primes, and was independently proved in 1896
by the French and Belgian mathematicians J. Hadamard and C. J. de la
Valke Poussin.

F.xtensive factor tables are valuable in researches on prime numbers.
Such a table for all numbers up to 24,01H1 was published by J. H. Rahn
in 1659. as an appendix to a book on algebra. In 1668, John Pell. of
England. extended this table up to 100,000. As a result of appeals by
tlw German tnathematician J. II. Lambert, an extensive and ill-fated
table was computed by a Viennese schoolmaster named Felkel. The
first volume of Felkers computations, giving factors of numbers up to
-10$.m0. was published in 1776 at thc expense of the Austrian imperial
treasury. But there were very few subscribers to the volume, and so the
treasury ret-alled almost the entire edition and converted the paper into
cartridges to be used in a war for killing Turks! In the nineteenth cen-
tury. the combined efforts of Chernac, Burckhardt, Crelle, Glaisher,
and the lightning calculator Dasc led to a table covering all numbers
up to 10.000.000. and published in ten volumes. The greatest achieve-
ment of this sort, however, is the table calculated by J. P Kulik (1773-
11461). at the I rniversity of Prague. His as yet unpublished manuscript
istlw result oi a 20-year hobby. and covers all numbers up to 100.000.000.
Tlw btst available factor table is that of the American matlwmatician
D. N. Lamer (1867-1938). It is a cleverly prepared one-volume table
covering numbers up to 10.000,000,

'I'here are many unproved conjectures regarding prime numbers. One
of these is to the effect that there are infi9itely many pairs of twin primet,
or priows 01 the form p and p + 2, like 3 and 5. 11 anti 13, and 29 and 31.
Another is the clmjecture made by C. Goldbach in 1742 in a letter to

Goldbach had observed that every even integer. except 2. seemed
representable as thc sum of two primes. Thus 4 2 ' 2. 6 3 .4- 3.
S S 3. 16 13 + 3, 18 11 + 7. . 29 19. .

100 97 3. and so forth. Progress on this problem was not made until
1931 when the Russian matlwmatician Schnirelmann showed that every
posit is e integer can be represented as the sum of not more than 300,000
primes! Somewhat hiter the Russian mathematician Vinogradoff showed
that there exists a positive integer N such that any integer n N can
be expreswd as the sum of at most four primes. but the proof in no way
permits us to appraise the size of N.

5



FOREWORD

A dramatic device bequeathed *.iy the ancients is the Sieve of Eratos-
thenes (c. 230 B.c.), who flourished about the time of Apollonius and
Archimedes, two of the greatest Greek mathematicians. This is a simple
device for testing whether or not a positive integer m is a prime by
systematically striking out all composite numbers which precede m.
How long must this pmess of striking out integers be continued before
we know that m is a prime? Eratosthenes provided the answer by the
following theorem, which thus becomes a useful test for a prime:

nositive integer m is a prime if it has no positive prime factor
less than or equal to I, where I is the greatest integer such that P is
less than or equal to m.
The present article not only explains the classical Sieve of Eratosthenes

but extends the discussion to modern developments including the so-
called random sieve, which is then related to tile "prime number the-
orem:' This theorem, anticipated by Gauss during the first half of the
nineteenth century, was refined and improved by 1900 in the form

urn f fir (x)
x.4.00 k )(nog x

It is of interest to note that the famous Russian mathematician Tche-
bysheff (1821-1894) succeeded in showing that for any real number
n > 31/2 there is always at least one prime between n and 2n 2.

1.
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Mathematical Sieves
They sift out prime numbers and similar series of integers.
Recent research into their properties suggests that a kind
of uncertainty principle may exist even in pure mathematics

David Hawkins

It is no accident that the theories of probability and statistics are
among the most rapidly growing branches of modern mathematics.
Science demands them. Faced with problems too complex, or too little
understood, to solve exactly, it falls back on laws or facts that are true
only probably, or on the average. And from physics, considered the most
exact of sciences, we learn that at bottom nature is inescapably uncer-
tain and chancy.

But if we must settle for a gambler's view of the real orld, can we
not console ourselves with the thought that in the abstract realm of
mathematics certainty is always passible? As this article will indicate,

El a ci C3

141 ILO I I 1ia,1

01111011110111

111

1NIKa,
011110111MOIL0111011111POIL
1111 1 1 1

ca 171
Figure 1

SIEVE OF ERATOSTHENES, a small part of which is shown here, was devised
more than ZOO° years ago to separate prime and composite numbers. The first
"layer" of the sieve screens out multiples of 2 from the series of integers at the top.
Since 3 passes through this layer. it screens out its own multiples in the next layer.
Numbers at the bottom are primes which have passed through all previous layers:
they will become screening numbers in their turn. No simpler method of deriving
primes has yet been devised.
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the answer is by no means clear. Some provinces of mathematics are so
difficult that, for the present at least, they must make do with rules
which are only probably true. Even in mathematics there may be an
uncertainty principle not utterly unlike the uncertainty principle of
physics.

The text of this sermon derives not from some new and exotic kind
of mathematics but from arithmetic. We shall discuss the classical prob-
lem of prime numbers. These are the positive integers-2, 3, 5, 7, 11
and so on which cannot be represented by multiplying two smaller
numbers. (Numbers which can be represented by such multiplication
4, 6, 8, 9, 10, 12 and so onare called composite numbers.) Prime
numbers have fascinated mathematicians for centuries. It was Euclid
who proved there is an infinite number of them. Since then many bril-
liant minds have turned to primes and have discovered a number of
remarkable theorems concerning them. Even more remarkable is what
has not been discovered. For example, what is the 34th prime number?
What is the billionth? The nth? To this day there is no general formula
to answer these questions. The only way to find the billionth prime
would be to write down all of the first billion and take the last. As
another example, consider the famous twin-prime problem. Pairs of
primes such as 11 and 13 or 29 and 31, which are separated by only one
other number, are known as twins. They keep turning up in the longest
series of primes that have yet been listed. Will they continue to recur
indefinitely? Is their number infinite? It seems probable, but no one
has been able to prove it.

The study of prime numbers has been quite literally as much an
experimental as a theoretical investigation. Most of the facts that have
been proved began as conjectures, based on the inspection of an actual
series of primes. Many conjectures remain, seeming more or less prob-
ably true. Thus an indispensable tool of the number theorist is a long
list of primes.

One of the best known, now found in every well-equipped mathe-
matics library, was compiled by D. N. Lehmer of the University of
California in 1914. The volume contains a table of the 664,580 prime
numbers smaller than 10,000,000, plus a few more to fill the last column,
ending with the prime 10,006,721. Lehmer's work was completed before
the age of automatic computation; today there are even longer lists, the
longest being "published' only on magnetic tape.

Modern tables of primes are prepared by a method, essentially un-
altered for 2000 years, which is called the sieve of Eratosthenes. Its
inventor was one of those great figures of the Hellenistic Age who seem
today, across the intervening centuries, so clairvoyant of the spirit of
modern science. Eratosthenes of Alexandria is best known for his feat

10



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(2x2) (2x3) (2x4) (215) (2x6) (2x7) (2x8)

(3x3) (3x5)

2 3 5 7 11 13 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2 (216)

3

(240) (241) (242) (243) (2x14) (2x15) (2x16) (2x17)

(30) (34) (341)

(5x5)

19 23 29 31

PRIME-NUMBER SIEVE shown here is a larger portion of the sieve shown in FIGURE 1. Primes appear on the bottomline. Each prime in turn becomes a sieving number which eliminates its own multiples, beginning with its square (lowermultiples have already been removed by lower primes). Thus each prime eliminates a proportion of the remaining num-bers equal to its reciprocal (e.g., 3 removes 1/3, 5 removes 115). The steps shown here in part yield all primes up to 49, thesquare of the next sieving number.

Figure 2
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14
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2 4 5 7 11 14 17

RANDOM-NUMBER SIEVE is statistically similar to the prime sieve but differs from it in detail. In both cases numbersnot previously eliminated become seiving numfiers; these screen out a proportion of the remaining numbers equal totheir reciprocals.

Figure 3a
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In the random sieve, however, the specific numbers to be eliminated are chosen by a random process symbolized by the
colored wheels. Thus the random sieve produces a different set of numbers each time it is used, while the set of prime

numbers is invariant.
Figure 3 b
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of measuring the size of the earth. But he was a man of universal learn-
ing who wrote also on geometry, the measurement of time, and thedrama. In his own day he was nicknamed "Beta" because, it was said,
he stood at least second in every field. Modern electronic computers can
make far longer lists of primes than Eratosthenes could have, but his
principle of computation has not been much iMproved.

The method is almost obvious (see Figure 1). Simply write down aseries of positive integers and proceed systematically to eliminate all the
composite numbers. The numbers that remain that fall through the
"sieve" are primes. We begin by knocking out the even numbers,
which are multiples of the first prime number: 2. (One is not usuallycalled a prime.) When we have done this, the smallest of the remaining
numbers is the second prime: 3. Now we eliminate the multiples of 3
from the numbers which survived the first sieving operation. Five is the
next number remaining, so its multiples drop out next; then the multi-
ples of 7, and so on.

The reader may wish to try a somewhat longer version of the sievethan the one shown in the illustration, where 7 is the largest sieving
number. In number theory the distance from the obvious to the pro-found is sometimes very short, and any amateur willing to play the gameis on the verge of some first-class mysteries. At any rate, a little manip-
ulation of the sieve will make clear some of its properties. Every sievingnumber is a prime. The first number sieved out by each flne is its own
square: the first riumber eliminated by 2 is 4; by 3, 9; by 5, 25 and so on.
In addition, the fraction of the remaining integers eliminated by each
sieving number is its own reciprocal: 2 sieves out half of the remaining
numbers, 3 sieves out a third, 5 sieves out a fifth.

By carrying out the sieving operation through the prime number 31,
we can obtain all the primes in the first 1,368 integers. (The first number
sieved out by 37, the next prime, is 37, or 1,369.) For purposes of illus-
tration we have arranged the first 1,024 of the integers in a 32 X 32
array, with the prime numbers shown in italics (see Figure 4). The list
is short, but it does demonstrate that the frequency of primes slowlydecreases in a rather irregular way. From considerably longer tables
Adrien Marie Legendre. and later Karl Friedrich Gauss, were able to
guess one of the most important facts about primes the celebrated
Prime Number Theorem. This tells how many primes we may expect
to find by carrying the list out to any given number. It states that if
the number is n, then there are about n divided by the logarithm of n
(n/log n) primes before it. As n grows larger, the error in the formula
becomes a smaller and smaller proportion of the exact number of primes.
Gauss, whose skill in computing belied the myth that mathematicians
cannot add and subtract. arrived at the theorem by a combinatioa of

14



PRIME
1 2
33 34353637383940414243444546
65 66
97 98

129 130

161 162

193 194

225 226

257 258

269 290

321 327

353 354

385 366

417 418

449 450
481 487

513 514

54 5 546

577 578

609 610

641 642

673 674

705 706

737 738

769 710

801 1102

833 834

865 866

897 898

929 930
961 962

993 994

SERIES_
3 4

_67 68

99 100

131 132

163 164

195 196
_ _
227 228

_

259 260__. _

291 292

323 324

355 356

38 7 388

419 420

451 452

483 484

515 516

547 548

579 580

611 612

643 644

675 676

707 708

739 740

771 772

603 904

835 536

861 868

899 900

931 932

963 964

995 996

5

69
101

133

165

197

229

261

293

325

357

319

421

453

485

517

549

511

613

645

677

709
741

773

809

837

869

901

933
965

997

6 7 8 9

73

105

137

169

201

233

265

297

329

361

393

425

457

489

521

553

515

617

649

681

713

745

777-
-809
841

173

905

937
969

1901

-
10 11 12 13 14

_ -
15 16

_ -

17 18 19 20 21
-a__

22 23 24

54 55 56

25

-57
89

121
.

153

185

217

- - _
26 27 28 29 30 31

58 59 60 61 62 63

90 91 92 93 94 95

122 123 124 125 126 127

32

64

96

128

160

192

224

256

288
320

352

384

416
.

448
480

512

544

576
-608-

_

6407.
672
. .

704

736

768_

800
832
864

896

928
960
992

Raw
Total

13

7

6

7

6

6

5

6

7

5

4

6

4

6

6

5

3

5

6

4

6

5

4

5

4

6

5

4

3

5

5

5

Como-
lath*
Total

11

18

24

31

37

43

48

54

61

66

70

76

80

86

92

97

100

105

111

115

121

126

130

135

139

145

150

154

157

162

167

172

74 75 76 77 78

106 107 108 109 110

138 139 140 141 142

_170_ 171 _172 _173 174

202 2-03- 204 205 266
2-34- 235- 236 237 238

266 267 268 269 270

298 299 300 301 202

47-48
_

79 SO

--49 50 -51-- 52 53

70 71

102 103

114 135

72

104

136

168

20-0

232

264

296

328

360

392

424

456

488

520

552

584

-616

648

6110

712

744

776
808

140-

872

904

936

968

1900

81 02 13 84 85 86 87 88

118 119 120
. _

150 151 152

182 183 184

214 215 216

111 112
. .

143 144

175 176

207 208

113 114 115 116 117

145 146 147 148 149
_

154 155 156 157 158 159

186 187 188 189 190 191

218 219 220 221 222 223
250- 261- 2 52 253 254 255

282 2113 284 285 286 287

314 315 316 317 318 319

3-48 349 350 3 51346- 3-47
.

3 78 3 79 .380 381 382 363

410 4 11 412 413 414 4 15_
442 443 444 445 446 447
474 475 4 76 477 478 879
506 507 508 509 510 511

536 539 540 541 542 543
-570-571 572 573-574 575
602 603 604 605 606-- 607

.

634 635 636 637 638 639_ 1_ -

666 667 668 669 670 671
_

-698 -69-9 700 701 702 703

730 731 732 733 734 735

762 763 764 765 766 767

166 117

-195 191-
230 231

262 213_
294 295

326 327

358 159
390 391

422 423

454 455

486 417

518 519

550 551

582 583

-614 615

646 647
678 679

710 711

742 743

774 775

806 107

838 139
870 871

902 903

934_935
966 967

_

998 999

177 178 179 180 NI
209 210 211 212 213

239 240 241 242 243 244 245 246 247 248

278 279 280

310 311 312

249

211

313
271 272

303 304

335 336
.

367 368

399 400

431- 432
463 464

495 496

527 528

273 274 275 276 277

305 306 307 308 309

330 331 332 333 334

362 363 364 365-366
394 395 396 397 398

-426 427 425 429 --430
458 459 460 461 462

490 491 492 493 494

522 523 524 525 526

337 3.38-339 3-4-0 341
.

369 370 371 372 373

401 402 403 404 405

433 434 435 -436-437
465 466 467 468 469

497 498 499 500 5G1

529 530 531 532 533

342 3-43-344
_

374 375 376

406 407 408

345

3 77

409
441

473

505

537

669-
601

633
665
697

729

761

438 439 440
470 471 472

502 503 504

534 535 536

566 567 568554 555 556 557 558 559 560 561 562 563 -564 565

586 587 558 589 590 591 592

623 624

655 656

617 688

593 594 595 5% 597
625 626 627 628 629

657- 658 -659-660 661
689 690 691 692 693

598 599 600

630 631 632

662 663 664
694 695 696

726 727 728

611 619 620 621 622

65O 651 652 653 654

682 1113 614-685 686

714 715 716 717 718 719 720 721 722 723 724 725

746 747 748 7.4_4_750

778 779-780781 782

751 752 753 754 755 756 757 758 759 760

793 784 785 786 787 788 719 790 791 792 793 794 795 796 797 798 799

810 811 812 813 114 815 116 117 118 819 120 121 822 823 824 825

157
889

826 827 828_829 830 831
842 --S43 844 845 846 847 848 849 850 551 852 113 854 855 856 858 159 860 861 862 813

890 891 892 893 894 895874 875 876 877 878 879 130 111 882 813 884 885 846 187 -888
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

953
-45

922 923 924 925 926 927
954 9-55 956 957 958 959
986 987 988 989 990 991

938 939 940 941 942

970 971 972 973 974

943 944

975 976

945 946 947 948 949 950 951 952

982 913 984977 978 979 980 981

1902 1903 1904 1,005 1,006 1,007 1903 1.009 1,010 1,011 1,012 1,013 1,014 1,015 1916 1,017 1,018 1,019 1.020 1,021 1,022 1,023 1,024

DISTRIBUTION of random "primes" between 1 and 1,024 (Figure
5) resembles that of true primes in the same number sequence
(Figure 4). Both sets of numbers (in bold face) thin out irregularly as
the sequence progresses (see totals at right). Another "run" of the

Figure 4

random sieve might yield an even more similar distribution. Tlw
resemblance of the two series tends to imensily as they are increasetl
in length.



RANDOM_ 51118$
-1 2 3 4 5 6 7 6 9 10 -11
33 34 35 36 37 36 39 40 41 42 43

_ 65 66 67 611 69 70 71 72, 73 74 75_
97 99 19 100 101 102 103 104 105 106 107

129 130 131 132 133 134 135 136 137 138 139
161 162 163 164 165 166 167 168 169 170 171
193 194 145 196 197 198 199 200-201 -207 203
225 226 227 278 229 230 _231 232 ...233 234 235
257 255 259- 260 261 262 _203 _214_ 265 266 267
239 290 291 797 293 794-_ 295 296-297 298 299
3271 322 323 324 325 326 -327 32$ 329 330 331_ .

_
353 354 355 356-- 357 358 359 360 361 362 363
385 356 317 388 389 390 391 392 393 394 395
417 418 419 420 421 422 423 424 425 426 427.

449 450 451 452 453 454 455 456_ 457 453 459
481 482 483 484 485 486- 437 -488 -489 440-491
513 514 515 516 517 518 519 520 521 522 523
545 546 547 548 549 550 551 -5-52. 551 5f..4 555
577 578 579 580 581 582 553 584 585 586 587
609 610 611 612 613 614 615 616 617 619 619
641 642 643 644 645 646 647 648 649 650 651
673 674 675 676 677 678 679 660 681 682 683.

705 106 707 708 709 710 711 712 713 714 715
737 738 739 740 741 742 743 744 745 746 747

_ .
769 770 771 772 773 774 775 -176----77-7- _771 '17-79_
801 502 503 804 805 806 607 $08 7809 810 911
811-834 535 836 837 $35 339 840 841 8-42 843
565 566 867 868 869 570 871 972 873 874 975
897 $98 899 9-01-901 9-02 903 904 905 906 907
929 930 931 432 933 934-__995 -936 --9.) 938 939
961 962 963 964 -965 -95-6 967 968 969 970 971
993 994 995 9% 99-7- 998 -999 1.000- 1.001 1.002 1,0(13

Row
Total

Car,
Total

12 13 14 15 16 17 18 19 -20 21 22 23 24 25 26- 27 28 29 30 31 32 8 a
44 45 46 47 48 49 SO 51 52 53 54 SS 56 57 58 59 60 61 62 63 64 6 14
76 77 78 79 BO 81 82 83 84- 85 06 87 U 89 90 91 92 93 94 95 96 7 21

108 109 110 111 312 113 114 115 116 117 111 119 120 121 122 123 124 125 126 127 128 8 29
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 7 36
172 173 174 115 176 177 178 179 180 181 182 183 184 185 186 117 188 189 190 191 192 6 42
204 205 206 207 208 209 210 211 212- 213 214 215 216 217 -211 -219 720 221- 222---2-23 224 4 46
236 237--238 239 240 241 242 243 244 245 246_247 248 249 252 253 254_ 255 256 4 50

270 271-272 273 274 275 276 277

-30-9

275 280

_250 .251
262 -283 284 285 216 288 7 57

.2-63

3-00

_269

SOL 302 363 304 305 306-307 308 310
_279

311 312

_281

-313 314 315 326 317 318

_287

319 320 6 63
332 333 334 335 336 337 338 939 340 341 342 343 344 345 346 347 148 349 350 35-1 352 3 66
364 365 366 367 368 369 370 371 312 373 374 375 376 377 378 379 380 381 382 383 384 4 70
396 397 3911 399 400 401 402 403 404 405 406 407 408 409 410 411 412 423 414 415 416 3 73
428 429 430 431 432 433 434 435 436 437 43$ 439 440 441 442 643 444 445 446 447 448 5 78
460 461 462 453 464 465 466 467 450 469 470 471 472

_

473 474 475 476 477-478 479 480 4 8249-2 493-494 495 491 497 418 499 --500 501-5-6 -503---504 505 506 507 -508 509 510 511 512 3 85
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 3 88
556 557 558 559 560-561 562 563 564 565 566 547 568 569 570 572 572 573 574 575 576 4 92
588 589 590 591 592 533 594- 595 596 597 598 599 600 601 602 603 604 605 606 607 608 3 95
620 621 622 623 624 625 626 627 6211 629 630 631 632 633 634 635 6361637_638 639 640 8 103
652 653 654 555 656 657 658 659 660 -661 -662- 663-564- 665-666 -667 668 669 670 671 672 3 106
6114 685 686 697 688 699 696 691 692 693 694 695 696 697 698 699 700 701 702 703 704- 4 110
716 717 715 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

_

735 736 5 115
745 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 7619 5 120
780 781 792 783 784 785 786 757 798 789 790 791 792 793 795 796_ 797_ 798_799 800 4 124
812 913 814 815 016 917 818 519 520 511 922 823 824

.794_
825 82-6 -827 829 829 830 831 532 3 127

944 845 846 547 843 849 850 $51 852 853 854 155 856 857 8511 859- 560 861 1162 863 564 5 132
876 877 878 179 880 581 882 1113 Mg 895 686 SST 888 889 890 591 592 893 894 895 996- 3 135
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 9-27 928 0 135
940 941 942 943 944 945 946 947 948 949 950 951 9-52_-953---954- 956 957 955 959 960 1 136
972 973 914 975 976 977 978 979 990 981 952 9113

__-1155

114 985 981 -917 988 989 990 991 992 5 141
1.004 1,005 1,006 1.007 1.008 1,009 1,010 1.011 1,012 1,013 4014 1.015 1,016 1,017 1.018 1.019 1,020 1,021 1,022 3,023 1.024 4 145

Figure 5



arithmetical insight and purely empirical study. It was not proved for
almost another century. In the 1890s the Belgian mathematician Charles
de la Va Ike Poussin and the French mathematician Jacques lladamard
independently found a proof, but it made use of concepts outside simple
whole numbers. It was not until 1950 that the Norwegian mathematician
Atle Selberg discovered a purely arithmetical proof. In the quaint vocab-
ulary of number theory his proof is called elementary, but it is not easy.

The difficulties of the Prime Number Theorem are connected with
the puzzlingly irregular way in which the primes are distributed. Indeed,
the theorem itself no more than state a statistical average. Out-
rageous as it may seem, the sequence of primes is just as "random" as
many of the natural phenomena on which we make bets. Sometimes we
think that if wc knew enough about the individual events of which such
phounnena are composed. we could predict thcir Outcome with cer-
tainty. This is surely truc of the primes. The sieve will eventually tell
us about the primality of any given number. But it cannot tell us about
all numbers, lwcause the sequence is itself an infinite, unending process.

From the time of Gauss mathematicians have talked, iwrhaps rather
shamefacedly, about the "probable" behavior of primes, and this kind
of reasoning has been very helpful. No mathematician, however, seems
to have gone the whole way and made a purely statistical model of the
prime-mmiber distribution. Recently I was led to try it. and I found
that the model helps clarify the Prime Number Theorem. Furthermore.
it places thc whole subject in a new perspective, In particular, the the-
orem no longer appears as a special fact about the sequence of numbers
which cannot be produced by multiplying two smaller numbers, but
rather as a common feature of all sequences of numbers generated by
sieves of a certain type.

The model is called the random sieve, and it works like this (Aee
Figure 5). Start with 2 as the first sieving number, just as in the method
Of Eratosthenes. Now make a kind of roulette wheel that is divided into
two equal parts. black and white. Go down the list of integers following
2. and for each one spin the wheel. If the black part of the wheel stops
at tlie pointer, strike the integer out; if white stops at the pointer. leave
tlw integer in. Note what you have accomplished. In the long run you
will have sieved out half of the integers, just as the first step in the
prinw number sieve does. But just which ones go out is a matter ot
dunce. ;ind the list will be different each time you try it.

Next take the first number that was not removed. Suppose it was 4.
Make a new wheel of which a fourth is black and three-fourths is white.
Spin the wheel for each succeeding number left after the first sieving.
When black comes up. strike the number out: when white collies up,
leave the nuinber in. This tune you have removed a fourth of the re-
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maining numbers. Proceed again to the first number not removed
say 5. Repeat the procedure using a sieving probability of !A, and so on.
After any number of steps you will be left with a series of integers which
might be called "random primes:'

If you want to try the sieve yourself, you need not actually make
roulette wheels. A table of random numbers or, failing that, a telephone
book. will do. Express each sieving probability as a four-digit decimal
(e.g., ¼ = .2500). f'or each "spin of the wheel" read successive telephone
numbers. If your probability is 1/4, then any number whose last four
digits are 2499 or less tells you to eliminate the integer in question;
2500 or more means to leave it in.

One run of thc random sieve for the first 1,024 integers is summarized
in the table on the preceding two pages. Comparing the distribution of
these random primes with the actual ones, we can see that our sieve
acts something like the sieve .of Eratosthenes. This is partly in spite of
the random element, but partly because of it. For a much longer series
the general statistical similarity would be even closer.

It may seem paradoxical that we can take a statistical model, involving
an infinity of random choices, as ersatz for the straightforward and per-
fectly defined sieve of Eratosthenes. The paradox is the same as the one
which underlies statistical mechanics: the average behavior of an assem-
bly of molecules is easier to describe than the actual behavior of any one
of them. Of course the random sieve preserves only the general features
of the prime-number sieve. The eccentricities of the latter are averaged
out by randomizing them. In either case any number not sieved out
becomes in turn a sieving number. It starts a process by which a propor-
timi of later numbers is removed, equal to the reciprocal of that sieving
number. Every wave of sieving in the prime-number sieve, except the
first, is determined strictly by the result of previous waves. At every
correspondMg point the random sieve makes probability choices, partly
determined by its own earlier statistical behavior.

Flow closely the random sieve actually approximates the sieve of
Eratosthenes is demonstrated by the fact that the Prime Number The-
orem holds for random primes. This can be proved by some elementary
mathematics, which in this case is also fairly easy (see Figure 6).

Perhaps the parallel between the two sieves is not so surprising. We
might say, indeed, that the prime-number sieve would have to be re-
markably abnormal in its detailed behavior not to lead to the same
general result as the random sieve. This statement implies that the ran-
dom sieve can be taken as a criterion of normality.

If so, there must be other sievesin fact, an infinite number of other
sieves that have the same general characteristics as those of the sieve
of Eratosthenes. but which differ somewhat in the details of their defini-
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don. They will not yield the prime numbers in general. but numbers
having smut: other special property. In I956,.as it happens, Stanislas NI.
Ulam and his associates at the Los Alamos Scientific Laboratory pub-
lished some results of a new type of sieve which yields what they called
"lucky" numbers. Their sieve begins by removing the multiples of 2.
leaving 3 as the first number not sieved out. Instead of removing next
the multiples of 3, the Ulam sieve removes every third remaining num-
ber. Since 5 is the third number in the list of remaining numbers, it
drops out, but 7 remains. Hence in the next wave every seventh number
of those still remaining is eliminated, and so on (Aee Figure S). The num-
bers that escape are "lucky:' It has been proved that the analogue of the
Prime Number Theorem holds for lucky numbers. Thus the random
sieve is a model for the lucky numbers as well as for the primes.

So far the random sieve has only duplicated results that can be ob-
tained independently and rigorously for the sieves of Eratosthenes nd
of [lam. The mathematics of it, however, is mostly easier. Therefore
many additional theorems can be obtained from the random sieve and
conjectured to be true of the other two. Such conjectures are not proofs,
but we can say that unless the prime number and lucky sieves are vastly
abnormal, the results must hold for them.

Let us look at a couple of examples. As we go to larger and larger
numbers in the table of integers, the spacing between successive primes
(or luckies or random primes) grows greater in an irregular way. In the
neighborhood of any number, n, the average interval is about the loga-
rithm of n. What is the greatest interval? We do not know the answer
for primes or luckies. Ihit for the random sieve we can prove that, with
only a finite number of exceptions, the interval is never greater than
the square of the logarithm of n, that is. (log n)2. The chance that there
will be any further exceptions can he mathc as small as we please by
taking a sufficiently large n. No upper boundary to the interval between
successive primes or successive luckies has been found which is anywhere
nearly as small, although from the existing tables it k)oks as though the
formula should hold for them too.

Another example is the twin-prime problem nwntioned earlier. In
the random sieve there is almost certainly an infinite number of twins.
Indeed the average interval between twins ought to be about (log n)2,
and the maximum interval between them, with only a finite number
of exceptions, ought to be (log n)'. Again the tables suggest that these
results are also true for primes and luckies. but no one has any idea how
to prove such results.

Although the random sieve does not solve any classical probk.ns
concerning primes, it does enable us to reformulate such problems. We
may ask: "Are the prime numbers normal in ouch and such a respect?!'

19
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The random sieve, or certain modifications of it, defines what we mean
by normality. If the properties we are talking about depend on the
exact fine structure of the sequence of primes, the answer will obviously
be no. Thus all primes except the number 2 are odd, while .thisis in-
finitely iniprobable in the sequences of random primes. But average
properties such as those we have discussed do not seem to depend on
the fine structure, and those may be presumed to be normal for primes
or luckies. Can anyone find a major abnormal property, in this sense,
of the sequence of primes? Or the sequence of luckies?

In the opinion of the author the concept of normality raises some
very deep questions about numbers and the theory of numbers. Sieves
as a class are a type of feedback mechanism: the output of one stage of
the process determines the input of the next stage. Now in any such
mechanism the nature of the coupling between output and input is
crucial; the result may be stable and predictable for one type of coupling
and unstable for another. So far as the outcome of the random sieve is
concerned, it is in one respect extremely stable. If by chance there are
relatively few sieving numbers in the early stages, they will remove
relatively few later on, and so there will be an increase in the later stages
to compensate for the initial deficit. The sieves of primes and luckies
share this characteristic. But this is a statistical stability.

When we look at other aspects of the prime or the lucky sieve, how-
ever, we find elements of instability. The detailed ordering of primes or
luckies depends upon the individual sieving numbers that precede
them, and this involves a growth of complexity without apparent limit.
Some easily defined properties of normal sequences, for example the
two described, may depend strongly enough on this complexity to make
it impossible, in a finite number of steps, to prove that they hold. Here
is the analogy, if it be one, with the uncet tainty principle of physics: An
infinite complexity requires infinite time to resolve it. If our suggestions
have substance, we will have examples of mathematical statements which
are almost certain, but which cannot, in principle, be proved. Examples
of undecidable propositions are known in modern arithmetic [see
"Godel's Proor by Ernest Nagel and James K. Newman; SCIENTIFIC
AMERICAN, June. 19561, but so far none of the unproved conjectures
about prime numbers has been shown to be undecidable. Perhaps none
of them is. If any are, however, the random sieve will be a model for the
primes in a deeper sense than any we have exploited in this article. We
cannot distinguish an infinitely complex order from a random one, and
so we might be forced to admit that there is a certain background of
noise even among the eternal verities.
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2 3 7 9 13 15 21 25 31 33 37 43

"Luc Kr' NUMBER SIEVE resembles the prime and random sieves already described. Here, also, numbers which are
not eliminated become sieving numbers and remove a proportion of the remaining munbers equal to their reciprocals.
Elimination is by counting: thus 3 removes every thirt3 remaining number, 7 every seventh. Like primes, the "lucky"
numbers form an invariant series.

Figure 8

2 3 7 9 13 15 21 25 31 * 33 37 43 49 51 63 * 67 69 73 75 79 87 93 * 99

105 111 115 127 * 129 133 135 141 151 159 * 163 169 171 1119 * 193 195 201 205 211 219 223 * 231 235

237 241 * 259 251 257 273 223 245 * 229 297 303 307 319 * 321 327 331 339 349 * 357 361 357 * 385 391

333 399 409 415 * 421 427 429 433 * 451 463 475 477 * i 487 489 425 511* 517 519 529 535 537 541*

553 559 * 577 579 513 591 601 * 613 615 619 621 631 630 * 643 645 651 655 * 673 679 685 693 699 * 717

723 727 729 735 * 739 741 745 * 769 777 781 787 * 801 205 619 823 831 * 641 855 * 867 873 863 685 895*

897 903 935 927 * 231 933 937 957 * 961 975 979 911 991 * 993 997 1009 1011 1021 1023 *

DISTRIBUTION OF "LUCKY" numbers between 1 and 1,024 resembles that of primes and random primes, thinning out
gradually but irregularly as the list increases. This table shows only the "luckies"; the intervening numbers are omitted.
Stars set off luckies within successive series of 32 integers; each of these groups corresponds to a single line of the tables in
Figures 4 and 5.

Figure 92



DERIVATION OF THE PRIME NUMBER THEOREM
FOR THE RANDOM SIEVE

Let us consider the fate of any two consecutive numbers, say 127 and
128, on a run through the random-sieving operation. We shall compare
their probabilities of getting through the sieve; i.e., of becoming sieving
numbers or "random primes" themselves.

Call these probabilities P, and P.,. Now it is obvious that 128 runs
the same risk of being eliminated by previous sieving numbers as does
127, except for one possibility. If 127 becomes a sieving number, it can
eliminate 128, but not vice versa. The probability that 127 is a sieving
number is P,. If it is a sieving number, the probability that it will elimi-
nate 128 (or any other following number) is 1/127. The chance that the
two events will occur and that 127 will eliminate 128 is the product of
their probabilities: P, X 1 / 127. The probability that this will not hap-
pen is 1 P121/127. Except for this factor the chance of survival for

all 111111 II 11111 III
fill II III 111111111111
L.V11111 1111111M 11111111111
girolgjp_miii1111111111111111111111

,
I 20 30 40 50 60 70 BO 90 100 110 n

AVERAGE NUMBER OF RANDOM "PRIMES" in the first n integers is shown
by the area under the solid curve, roughly approximated by the hatched rectangle
(drawn here for n ISO). The area under the broken curve gives the approximate
number of true primes. Since the two curves approach each other as n increases,
the two sets of primes are very like.

Figure 7

128 is the same as that for 127. Its net probability is therefore the product
of the two: P., = P(1 P37/127).

At this point it will be more convenient to shift from die probabilities
to their reciprocals. The reciprocal of a probability has itself a clear sta-
tistical ineaning: it gives the average interval, or range, between two
events. (Instead of saying that the probability of double six in dice is
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1/36, we can as well say that the average interval between throws of
double six is 36.) Denote the reciprocal of P, by X., and of P12 by
X, measures the average interval between sieving numbers in the neigh-
borhood of 127 and X,. measures the same interval in the slightly shifted
neighborhood of 128.

By a little algebra we can show that if P125 = P127( 1 P127/ 127), then
X,. = X -I- 1/127 r, where r is a negligibly small remainder. For
practical purposes we can say that X,. = X + 1/127. Now a similar
argument would show that X, = X + 1/126, and so on. Eventually
we arrive at the result that X,. = 1 4- 1/2 + 1/3 + 1/4 1/127, or,
in general. X, = 1 + 112 + 1/3 + 1/4 . 1/n, with a remainder that
is still negligibly small. In calculus books we discover that the series 1 +

. 1/2 + 1/3 + 1/4 + 1/n is nearly equal to log n for fairly long series.
The difference can be made as small as we like by making n large enough.
Therefore we can say that, in the long run, X. = log n, or P. = 1/log n.

The graph on the preceding page shows the values of 1/log n (and, for
comparison, the recipiocal of the actual values of the series 1 + 1/2 +
1/3 + 1/4 1/n). Thus the curve is also a graph of P.. Suppose we
now want to know how many random primes, on the average, there
should be before any number n. We simply add, the probabilities that
each smaller number becomes a sieving number. Graphically this is the
same as taking the area under the curve. But if n is very large, then the
difference between the area under the curve and the area of the shaded
rectangle, which is n x P. is negligible. Hence we can say that the aver-
age number of random primes out to n is n X P.. But P. = 1/log n, so
the number becomes n/log n. And this is the Prime Number Theorem!

Having completed the proof, we may reexamine our reasoning to see
why the result is plausible. The essential step was to find that X. + 1 =
X. -4- I In. This equation says that on the average, over many repetitions
of the sieve, any number n removes enough of the numbers following to
lengthen the interval between them by 1 /n. Take a specific example. Sup-
pose that is 1/5 and X is 5. Then 127 will be a sieving number 1/5
of the time. When it is. it will eliminate about 1/127 of the remaining
numbers, lengthening the average interval between them from 5 to 5 +
5/127. Since it only does this about one time out of every five trials of
the sieve. its average effect will be to lengthen the interval from 5 to
5 + 1/127.

The same chain of reasoning is plausible for the prime-number sieve.

23

3 0



FOREWORD

You have already seen how the Sieve of Eratosthenes can be used to
determine all the primes up to any desired number. In the present essay
we find an ingenious modification of the sieve in the form of a mechan-
ical chart, which reveals additional properties of the primes.

The property of greatest interest, perhaps, is the fact that any prime
greater than 3 is equal either to one more or one less than a multiple
of 6. Although the author proves this property, you might like to refer
to a table of primes and verify this property for a few cases.
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The Factorgrad
Kenneth P. Swallow

The problem of finding all the prime numbers has intrigued mathe-
maticians througl . the ages. The many attempts to solve this problem
have yielded only methods that will produce a finite number of primes,
the most noted of these being the Sieve of Eratosthenes. The Factorgram
is an adaptation of this systematic mechanical method.

In the Eratosthenes Sieve, to find all the primes less than a selected
number, N, all the integers from 2 to N are written in order. The num-
ber 2. which is known to be a prime, is encircled and every second
number from 2 is crossed out. These are the multiples of 2 and hence
cannot be primes.

3 \ 5 \ 7 8 9 11

X 13 l'sk 15 Wik 17 Ilk 19 124 etc.
The number 3, which is prime because it is the only remaining number
less than 2=, is encircled and every third number from 3 is crossed out.

_,C) 5 ,.,>15 7 :5. /
13 i rik 17 l9 atz etc.

Now, 5 and 7 are the only remaining numbers less than 32, therefore
they must be prime numbers. This process is continued until every
multiple of every prime number up to VN is crossed out. The remain-
ing numbers are the prime numbers less than N.

140W TO MAKE A FACI'ORGRAM

"li) find all the prime numbers less than a selected number. N, by the
Factorgram, place all the numbers from 0 to N in rows of six numbers
as follows:

0 1 2 3 4 5
6 7 8 9 10 II

12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35
36 37 38 39 40 41

Now the multiples of 2 can be crossed out by drawing lines through the
entire first. third and fifth columns, with the exception of the number 2
itself. Similarly, the multiples of 3 can be crossed out by drawing a line

' Kenneth P Swallow. "Ekturniaty Number Theory in High School Mathrinatits:' pp. KI-93. Un-
published Master's Thesis, Obio State I:nisei-OM 1952.
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through the entire fourthsolumn, with the exception of the number 3
itself. The first column contains multiples of 3 but it is already crossed
out. Next, the multiples of 5 are to be crossed out. The first six of these,
5. 10. 15, 20, 25, am 30, lie in a straight line running diagonally down.
ward front right to ieft. 'Flaw next six multiples of five (35 to 60) lie in
another straight line, which is parallel to the first line. All the multiples
of 5 can be crossed out by a set of such parallel lines. Next, the multiples
of 7 can be crossed out by a set of such parallel lines running downward
from left to right. The multiples of all prime numbers can be crossed
out by similar sets of parallel lines. In the FactorgTam as in the Eratos-
thenes Sieve, when all the multiples of all the prime numbers less than
Arare crossed out the remaining numbers less than N are all primes.

The Factorgram can be made on a piece of paper and then rolled into
a cylinder so that the numbers form a helical spiral. (In Figure 1, roll so
that the two zeros coincide.) In this form*, each of the sets of parallel
lines which cross out the multiples of the prime numbers will also form
a helical spiral.

FEATURES OF THE FACTORGRAM

The main purpose of the Factomram, as of the Eratosthenes Sieve,
is to find all the primes up to any selected ntunber. However. the Factor-
gram has many features not found in the usual Sieve.

1. The mechanical process is very easy. The columns of numbers can
bc made quickly with a typewriter. If a long Factorgram is to be made,
periods should be placed after the numbers as was done in Figure 1.
The period, rather than the figure. is used to represent the exact location
of each number. (In Figure 1 the distance front the zero line to cach
number is proportional to the magnitude of the number. This improves
the Factorgram in its cylindrical form but is not really necessary for
proper operation.) A pair of draftsman's triangles can be used to draw
the parallel lines needed to cross out the multiples of each prime num-
ber. The first line of each set of parallel lines is determined by zero and
the prime number. All such lines pass through zero, since zero is a multi-
ple of every number.

2. The prime numbers, which seem to be so haphazardly scattered
through the number system have, with the exception of 2 and 3. settled
down to occupy positions in only two of the Factorgraln's six columns.

S. The presence bt prime pairs of the form p and p -1- 2. such as 5
and 7. 11 and13, etc.. and of- the form p and p 4- 4. such as 7 lnd 11, 13
and 17. etc.. become more obvious. Also, the relationships of prime
numbers to the number 6 are emphasized.

4. just as a primc number can be identified by thc lack of lines pass.
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ing through it, a composite number can be identified by the one or more
lines passing through it. These lines provide a means, free of all trial-
and-error methods, for finding all the prime factors of a composite
number. It is this property of the Factorgram which gives it its name.

'The method of factoring a composite number by the Factorgram is
as follows: First locate the number on the Factorgram and trace any one
of the lines passing through it back to its prime number origin (the
last number on the line before reaching zero). This number is one of
the prime factors of the original composite number. Divide the original
number by this prime factor to obtain a second factor. Find this new
factor on the Factorgram to see whether it is prime or composite. If it is
prime, the problem is completed; if it is composite, continue the process
until the factors of this factor are prime.

For a numerical example, consider the factoring of 117. There are
two lines passing through it on the Factorgram. One of these goes back
to 3. Dividing 117 by 3 we have 39. On the Factorgram, 39 has two lines
passing through it also, one going to 3 and the other to 13. Therefore,
the factors of 117 are 3 3 13.

Frequently the divisions will be unnecessary because there may be
as many lines passing through the given number as there are prime
factors of the number. In this case, each line will give one of the prime
factors. In fact, the necessity for division occurs only in two cases,
(a) if the same nuinber occurs as a factor two or more times, and (b) if
one of the factors is greater than the square mot of the largest number
on the Factorgram. Variations of the Factorgram that will eliminate the
division in both of these cases can be made but these variations become
overly complicated with too many lines.

5. If two numbers have a common factor, they will be connected on
the Factorgram by the line representing that factor. For example, 26
and 65 are connected by the line that passes through 13; 88 and 121
are connected by the line that passes through 11; and 70 and 105 are
cminected by two) lines, one passing through 5 and the other passing
through 7. This property of the Factorgrain can be useful in reducing
fractions. By locating the numerator and the denominator of a fraction.
one can tell whetlwr the fraction can be reduced and if so, by what
number the numerator and denominator should be divided.

FACJORGRAM WORKS

rhe unusual properties of the Factorgram are based entirely upon
the following proposition:
Theorem: All prime numbers greater than 3 arc either one more or
one less than a multiple pf 6.?

In other words, all prnnes greater than 3 are given by one of the two



102

108

114

12

Figure 7. THE FACTORGRAM
(1 to 149)
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expressions. 6n + 1 or 6n 1. For example, 6(1) + 1 = 7, 6(2) + 1 13
and. 6(3) + 1 19, while 6(1) 1 = 5, 6(2) 1= 11, and 6(3) 1= 17.
Of course, the converse of this statement is not necessarily true. For
many values of n, the expressions fin + 1 and 6n 1 will not yield primes;
for example, n = 4 in 6n + 1 gives 25. n = 6 in 6n 1 gives 35, and

= 8 in 6n + 1 gives 49.
The proof of this theorem is quite simple. Every number can be ex-

pressed by one of the following six forms, four of which are always
factorable, if n is greater than zero.

6n = 6(n)
fin + 1 not factorable
6n + 2 = 2(3n + 1)
fin 4- 3 = 3(2n + 1)
6n + 4 = 2(3n + 2)

fin + 5 (or 6n 1) not factorable
The expressions fin + 5 and 6 (n +1) 1 are equivalent since 5 more
than a multiple of 6 is also 1 less than the next multiple of 6. Obviously,
if four of these six expressions are always factorable, the primes must
be expressed by the other two expressions. and hence, the theorem is true.

Now, in the Factorgram. n is the number of each TOW (if the first
row is 0), and the six columns are, from left to right, 6n, 6n + 1, 6n + 2,
(in t 3, fin + 4, and 6n + 5.

tr.)

st.

0 1 2 3 4 5
6 7 8 9 10 11

2 12 13 14 15 16 17
3

Therefore, from the above theorem, all the prime numbers above 3
must lie in the second and fifth columns.

Tlw multiples of a prime of the form 6n + 1 must be 2(6n + 1).
3(fin + 1). 4(6n +1). etc. These, when simplified are 12n +2, 18n + 3.
2.1n t- 4. etc.. or fin' + 2. 6n" + 3. 6n" + 4, etc. Hence, the multiples
of 6n -} 1 must progress in regular fashion from the second column to
the third column, the third to the fourth, the fourth to the fifth, and so
on. In a similar manner, the multiples of a prime of the form 6n 1

' In congtHelICV noution, for p > 3, for p ± I (mod 6).
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(the same as 6n + 5) progress from one column to thc next, but in this
case they progress from right to left.

The number of rows the line passing through the multiples of a prime
goes down as it progresses forward or backward from one column to the
next is given by the value of n for that prime. For example, thc line
through the multiples of 7, for which n 1. in 6n + 1, goes down (me
row as it progresses forward one column, while the line passing through
the multiples of 19, for which n 3 in 6n + 1, goes down three rows as
it progresses forward one column. If the prime is of the form 6n 1

the line passing through its multiples will progress backward (right to
left) instead of forward.

This sort of slope is helpful both in setting up the parallel lines in
making the Factorgram and in using the Factorgram in factoring.
In a long Factorgram it is flat necessary to trace the parallel lines or
spirals back to the prime that produced them. One merely needs to
locate the number t) be factored and note how many rows down the
line (or lines) goes as it progresses forward or backward One column.
This number is the value of n which is to be substituted in 6n + 1 if it
progresses forward or 6n 1 if it progresses backward. The value of the
resulting expression is the same prime munber that would be obtained
if the line were traced back to its origin.

While the Factorgram is neither particularly profound nor useful, it
is simple enough for high school students to understand and offers many
opportunities for interesting classroom or mathematics club discussion as
do the Erawsthenes' Sieve, Pascal's Triangle. and Magic Squares,
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Conside-r-thelactors of the integer 6, namely, 1, 2, 3, and 6; their sum
is 12, or twice 6. Again, the factors of 28 are 1, 2, 4, 7, 14, and 28; their
sum is 56. or twice 28. Such numbers are called perfect numbers. An
integer is said to be a perfect number if the sum of its factors is twice
the given integer. A perfect number is also defined as any integer which
equals the sum of its proper factors, where a "proper" factor of a number
means any of its divisors except the number itself.

The ancient Greeks were familiar with perfect numbers. In fact,
Euclid proved that if an even integer is of the form

2"-1 (2" 1), where 2P I is a prime,

then that integer is a perfect number.
The converse theorem was proved by Euler some two thousand years

later. If an integer is an even perfect number, it has the form
2"-' (2" 1). where both p and 2" I are primes.

It is interesting to note that all known perfect numbers are even.
Although no odd perfect number has ever been found, mathematicians
have not yet succeeded in proving that none exists.

Integers of thc form 2" I. where p is a pritnc, are called Mersenne
numbers. after the French mathematician Marin Merscnne (c. 1620).
Thcy play an important role in the study of perfect numbers. Meisenne
numbers arc designated as Mp = 2" 1. where p is a prime. Thus, for
p = 5. M, 2 I 31. If M, is a prime number, it is called a Mer-
senne prime. Until recently. only 20 Mersenne primes were known. In
1963 the three largest known Mersenne primes, M. M, and M,,,,.
were discovered by the electronic computer Illiac III at the Digital
Computer Laboratory of the University of Illinois. This bring to 23
the number of known Mersenne primes which are
2. 3, 5, 7, 13. 17, 19. 31. 61. 89, 107, 127, 521, 607. 1279, 2203, 2281,
3217. 4253, 4423, 9689, 9941, 11.21$.

A multiply perfed number is an integer n the sum of whose factors
is a multiple of n. For example, the sum of the "proper" factors of 120
is twice 120, or 240; thus 1 1- 2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15
+ + 24 4- 30 + 40 60 240.
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Perfect Numbers
Constance Reid

The Greeks, greatly intrigued by the fact that the number 6 is the
sum of all its divisors except itself (1 + 2 + 3), called it a "perfect"
number. They wondered how many other such numbers there were.
It was easy enough to ascertain by trial that the second perfect number
was 28 (1 -I- 2 -4- 4 + 7 + 14). The great Euclid was able to prove that
in all eases where a number can be factored into the form 2" (2" 1)

and 2" I is a prime number, the number must be the sum of all its
divisors except itself. Thus in the case of 6, n is 2 and 2" 1 = 3, a prime
number; in the case of 28, n is 3 and 2" I = 7, again a prime number.
With Euclid's formula it was no difficult matter to compute that the
third and fourth.perfect numbers were 496 (n = 5) and 8,128 (n = 7).
But beyond that the computation became laborious, and in any event
it was not proved that this rule included all the perfect numbers. Euclid
left for future mathematicians a challenging question: How many per-
fect numbers arc there?

In more than 2,000 years mathematicians were able to turn up only
12 numbers that met the strict requirements for numerical perfection.
Within the past year, however, the University of California mathema-
tician R. M. Robinson has, with the aid of a modern computer, dis-
covered five more. The discovery did not attract the attention of the
press. Perfect numbers are not useful in the construction of atomic
Iminbs. In fact, they are not useful at all. They are merely interesting.
and their story is an interesting one.

For many centuries philosophers were more concerned with the
ethical or religious significance of perfect numbers than with their
mathematics. The Romans attached the number 6 to Venus. because it
is the product of the two sexesthe odd (masculine) number 3 and the
even (feminine) number 2. The ancient Hebrews explained that God
chose to create the world in six days rather than in one because 6 is
the inure perfect number. The eighth-century English theologian Alcuin
pointed out that the second origin of the human race. from the eight
human beings on Noah's Ark, was less perfect than the first, 8 being
an imperfect number. In the 12th century Rabbi Josef Ankin recom-
mended the study of perfect numbers in a program for the "healing of
souls:*

The mathematicians. nwanwhile, had been making slow progress.
The first four perfect numbers-6, 28. 496 and 8.128 had been known
as early as the first century. Not until 14 centuries later was the fifth
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discovered. It was 33,550,336 (n = 13). Then in 1644 the French mathe-
matician Marin Mersetme, a colleague of Descartes, announced six more
at one clip, and thereby linked his name forever with perfect numbers.
The numbers were now so large that they were necessarily described
only by the prime.number 2" 1, or, more briefly, by the exponent, n.
in Euclid's formula. The values of n for the I I perfect numbers, includ-
ing Mersenne's six new ones, were 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and
257. In other words, the largest prime in the series was the enormous
number 22" I.

It was obvious to other mathematicians that Mersenne could not have
tested for primality all the numbers he had announced. But neither
could they. At that time the only method of testing was to try every
possible divisor of each number. By this laborious method mathemati-
cians did test Mersenne's :irst eight numbers and found them prime.

It was the great Swim mathematician Leonhard Euler who tested the
eighth number (2" 1). Euler also proved that all even perfect numbers
must be of the form expressed by Euclid's theorem. No odd perfect
number has ever been found, but it has never been proved that such a
number cannot exist.

For more than 100 years the perfect number formed from thc prime
2" I remained the largest proved. Then in 1876 the French mathe-
matician Eduard Lucas worketi out a method by which a possible prime
could be tested without trying all potential divisors. At the same time
he announced that he had tested 2'" 1 by his method and found it
prime.

According to Lucas, the number 2" 1 is prime if, and only it. it
divides the (n I) term of a certain series. In this series the first number
is 4 and each succeeding number is the square of the preceding one
minus 2; in other words 4, 14. 19.1, 37,634. and so on. For example. to
test the prime number 7 (23 1), one divides 7 into 14; the n l term in
this case being thc second number in the series, since n is 3. Since 7
divides evenly into 14. it is prime by Lucas' test.

Obviously even Lucas' short-cut met hexl becomes rather unwieldy
when, as in the case of 2''7 one must divide 170341.183,460.46,-
231,731.687,303,715.884,105,727 into the 126th term of Lucas' series.
For such numbers, mathematicians use a short-cut of the short-cut: in-
stead of squaring each term of the series. they square only the remainder
after they have divided the number being tested into it.

Even with the help ot Lucas method mathematicians were not able
to finish testing all of the possible Mersenne numbers until a few years
ago. Their tally showed that Mersenne's list of perfect numbers was
incorrect. lie was right on nine numbers (those for which n is 2
7. 13. 17. 19. 31 and 127). but he was wrong on two he had listed (those
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with the exponents 67 and 257), and he had missed three numbers in the
series (with exponents 61, 89 and 107). Thus the list stood at 12, with2(2' 1) the largest known perfect number.

2(22 1)
22(23 1)
24(26 1)
26(27 1)

212(213
216(217 1)
218(219
230(231 1)
260(261
288(269 1)

2106(2107 1)
2126(2127 _
2520(2521 _
2606(2607

21278(21279
22202(22203 _
22280(22281 _

LIST of perlei t numbers stands at 17. The last five were added by SWAG.

Thcn on January 30 last year Robinson fed the problem to the
National Bureau of Standards' Vestern Automatic Computer, known
briefly as SWAC. This is a high-speed machine: it can do an addition
of 36 binary digits in 64 millionths of a second, Robinsons' job was to
break down the Lucas method into a program of the 13 kinds of com-
mands to which the SWAC responds. The job was complicated by the
fact that, while the machine is built to handle numbers up to only 36
binary digits. the numbers he was working with ran to 2,300 such digits.
It was, he found, very much like explaining to a human being how to
multiply 100-digit numbers on a desk calculator built to handle 10, To
tell SWAC how to test a possible prime by the Lucas method, 184 sepa-
rate commands were necessary. The same program of commands, how-
ever, could be used for testing any number of the Mersenne type from
21-- 1 t, 1.

The program of commands, coded and punched on paper tape, was
placed in the machine's "memory:' MI that was then necessary to test
the primality of any Mersenne number was to insert the exponent of
the new number as it was to be tested, The machine could do the rest.
even to typing out the resulfof the test continuous zeros if the number
was a prime,
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The first number to be tested was 22" 1, the largest of the 11 num-
ben announced by Mersenne. Twenty years before it had been found
not prime by D. H. Lehmer, who worked two hours a day for a year
with a dekk calculator to do the test. It happened that this evening
Lehmer himself, now the director of research at the Bureau of Standards'
Institute for Numerical Analysis on the U.C.L.A. campus, was in the
room. lie saw the machine do in 48 seconds what had taken him an
arduous 700 and some hours. But the machine got exactly the same
result.

SWAC then continued on a list of larger Mersenne
had said that all eternity would not suffice to test Is nether a given num-
ber of 15 or 20 digits was prime. But within a few hours SWAC tested
42 numbers, the smallest of which had more than 80 digits. One by one
it determined that they were not prime. Finally at 10 p.m. a string of
zeros came up: the machine had found a new perfect number. Its prime
was 2'" 1. just before midnight, 13 more numbers later, another
prime came up: 2' I. In the decimal system this is a number of 183
digits.

The machine continued testing numbers when opportunity afforded
during the next few months. Last June the number 2"7" 1 was found
to be prime. In October, concluding the program, it established as prime
the numbers 222"' 1 and 2" 1. The latter is the largest prime num-
ber, of any form, now known.

The perfect numbers of which these primes are components are, of
course, much largerso large that in comparison with them conven-
tionally "astronomical" numbers seem microscopic. Yet, by a proof as
old as Euclid, mathematicians know that these numbers are the sum
of all their divisors except themselves just as surely as they know that
6 1 + 2 + 3.

They still do not know, however, how many perfect numbers there are.
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